Principles of tumor immunity

Abul K. Abbas MD UCSF

advancing health worldwide™

1

Lecture outline

- Role of the immune system in defending against cancers
 - Initiating anti-tumor immune responses
- Tumor antigens
- Immune evasion by cancers
- Immune cells that promote cancers
- New therapeutic approaches

General principles

- The immune system recognizes and reacts against cancers (immune surveillance)
- The immune response against tumors is often dominated by regulation or tolerance
 - Evasion of host immunity is one of the hallmarks of cancer (Hanahan and Weinberg Cell 144:646, 2011)
- Some immune responses promote cancer growth
- Immunotherapies have revolutionized the care of cancer patients

T cell responses to tumors

Initiating CD8+ T-cell responses to tumors

- To initiate T cell responses, dendritic cells capture antigens from site of production and take the antigens to secondary lymphoid organs (e.g., lymph nodes) through which naïve T cells recirculate
 - DCs are located in the correct place (tissues where tumors grow) and migrate to the correct place (co-localize with naïve T cells)
 - Are antitumor responses also initiated in the tumor environment?

Initiating CD8+ T-cell responses to tumors

- CD8+ T cells recognize antigens present in the cytosol of cells → proteasomal processing and presentation by class I MHC
- But antigens captured by DCs are ingested into vesicles (the common pathway of class II MHC-associated antigen presentation)
- Specialized DCs transfer antigens from vesicles into the cytosol: the pathway of cross-presentation
 - Need to optimize this pathway for promoting anti-tumor immunity

Cross-presentation of tumor antigens

Type 1 conventional DCs (cDC1) are the most potent cross-presenting APCs Once functional CTLs are generated, they can kill tumor cells producing tumor antigens in the cytosol (peptides presented on class I MHC)

T cell infiltrate in tumor predicts survival

Analysis of T cell infiltrate in colon cancers

In some cancers, "immunoscore" is as good at predicting outcome as histologic grade and clinical stage of tumor

T cell phenotypes that predict better survival

Analysis of 124 published articles on correlation of T cell subsets and prognosis of 20 cancer types

Fridman et al. Nat Rev Cancer 12:298, 2012

Prognostic significance of other immune cell types

Becht et al. Adv Immunol 130:95, 2016

Types of tumor antigens

Types of tumor antigens

- Tumor antigens:
 - Must be tumor-specific (not in normal cells)
 - Must be capable of stimulating CD8 T cell responses in patients
- Most tumor antigens that elicit immune responses are neoantigens
 - Produced by mutated genes that are usually not involved in oncogenesis and reflect and reflect environmental carcinogen exposure and genomic instability (passenger mutations)
 - Cytosolic proteins so presented by class I MHC
 - Mutations have to be in MHC-binding epitopes
 - Not present normally, so no tolerance

Other tumor antigens

- Viral proteins
 - Only in tumors caused by oncogenic viruses (HPV, EBV)
- Unmutated proteins (tyrosinase, cancer-testis antigens)
 - Derepressed (because of epigenetic changes) or over-expressed (gene amplification)
- Cell surface antigens are often differentiation antigens that are also present in normal cells
 - Major challenge for CAR-T therapy for solid tumors

Identification of tumor neoantigens

Next gen sequencing and/or RNA-seq

Identification of HLAbinding peptides

MHC-peptide multimer and/or functional assays

Ton N. Schumacher, and Robert D. Schreiber Science 2015;348:69-74

From M. DuPage, UC-Berkeley

Cell types that may promote cancers

- Foxp3+ regulatory T cells (Tregs)
 Variable results in humans
- Alternatively activated (M2) macrophages
 Mechanism of action?
- Myeloid-derived suppressor cells (MDSC)
 Poorly defined markers
- B cells
 - In experimental models only

Manipulating the tumor microenvironment

- Goal: stimulate protective (anti-tumor) cells and disable or eliminate pro-tumor cells
- Challenges:
 - Heterogeneity (TME varies in the same tumor type in different individuals and sometimes at different sites in the same patient)
 - Lack of markers for cell type-specific deletion (e.g., MDSCs)
 - Systemic depletion can cause serious adverse effects (e.g., Tregs)

Tumor immune evasion mechanisms

- Loss of MHC and proteins involved in antigen processing
 - Mutations in β 2-microglobulin
- T cell exhaustion
 - Repeated stimulation of T cells
- Expression of PD-L1
 - PD-L1 is also induced on myeloid cells in the tumor microenvironment
- Secretion of immunosuppressive molecules $TGF-\beta$, others

T cell exhaustion

The same principle applies to stimulation by tumors

Harnessing the immune system to combat cancer

Cancer vaccines

- Which antigens?
- How to induce potent CTL responses?
- Avoiding immune evasion by tumors
- Overcoming tumor-induced immune regulation (e.g., checkpoints)
- Changes in tumor antigens with clonal evolution

Adoptive cellular therapy

- Limiting factor is frequency of tumorspecific T cells
 - Initial attempts with cells from patients had mixed success (too few tumor-specific T cells?)
 - Rationale of CAR-T
- Challenges with CAR-T therapy
 - Toxicity (strong T cell activation)
 - Immune evasion mechanisms of tumors
 - T cell exhaustion
 - Unable to target tumor-specific antigen for solid tumors

Checkpoint blockade therapy

- Based on defining checkpoints (brakes) in immune responses
 - CTLA-4: removes B7, competitive inhibitor of CD28
 - PD-1: signaling inhibitor
 - Others: not well defined

Functions of CTLA-4 and PD-1

CTLA-4	PD-1

Major site of action	Lymphoid organs	Peripheral tissues
Stage of immune response suppressed	Induction	Effector phase
Mechanism of action	Removes B7, out- competes CD28	Signaling inhibitor of CD28 and TCR
Cell type suppressed	CD4+ > CD8+	CD8+ > CD4+

Challenges in checkpoint blockade

- Effective in only a minority of patients
 - Combination strategies to increase the frequency of responders; so far, only successful combination is blocking CTLA-4 and PD-1
- Toxicity: autoimmune reactions
 - Cannot separate anti-tumor effect from autoimmunity
- Lack of predictive biomarkers – Which patients will respond?