FOCiS Advanced Course in Basic & Clinical Immunology

Innate Lymphocytes

Lewis L. Lanier lewis.lanier@ucsf.edu

Scientific Advisory Boards 2024

Innate Lymphoid Cells (ILC)

*"Lineage-negative" Id2-dependent cells arising from a common lymphoid precursor

*Some mediate lymph node organogenesis during fetal development - "Lti" – lymphoid-tissue inducers

*Some become tissue-resident effector cells expressing cytokines

*Roles in homeostasis - establishing commensals, responding to dietary signals, responding to circadian cues, etc.

*Roles in inflammation and disease

Development of NK cells and ILC

INNATE LYMPHOID CELLS

Nature Reviews | Immunology

Spits 2013

ILC1 restrict early viral replication in tissues

Spits & Cupedo Ann Rev Imm 2012

The heterogeneity of human CD127⁺ innate lymphoid cells revealed by single-cell RNA sequencing

nature

immunology

Åsa K Björklund^{1–3,6}, Marianne Forkel^{4,6}, Simone Picelli¹, Viktoria Konya⁴, Jakob Theorell⁴, Danielle Friberg⁵, Rickard Sandberg^{1,2} & Jenny Mjösberg⁴

ILCs - the innate counterparts of T cells

NK cells.....CD8+ T cells ILC1.....Th1 cells ILC2.....Th2 cells ILC3.....Th17 cells

Human ILC subsets may exhibit substantial plasticity

Class Discussion

What is the purpose of this redundancy?

If Th cells exist, why also have ILC?

What is the purpose of this redundancy?

If Th cells exist, why also have ILC?

1. Speed

2. Location

Natural Killer Cells

Perforin granzymes

Human CD3-,CD56+, (Nkp46+) Mouse CD3-,NKR-P1C+ (aka NK1.1) (NKp46+)

3rd lineage of lymphocytes

Function in innate immunity to protect against viruses, bacteria, parasites, fungi, & tumors

Produce cytokines & kill abnormal cells

Detecting NK cells in human peripheral blood

iNKT cells

T cells express an invariant $TcR\alpha$ chain Recognize lipid antigens presented by CD1d

*In humans - invariant Va24 + Ja18 TcR α *In mice - invariant Va14 + Ja18 TcR α

Human NK Cells - Where do they live?

Dogra et al. Cell 2020

NK Cells - What do they do?

Cell mediated-cytotoxicity – "natural killing"

Antibody-dependent cellular cytotoxicity (kill antibody-coated cells via activating Fc receptor CD16)

Early γ -interferon production

Secrete TNF α , LT α , GM-CSF, IL-3, M-CSF, IL-10, MIP-1 α , MIP-1 β , RANTES, etc.

(but NOT IL-2, IL-4, IL-17, or IL-22 – these are ILC not NK)

Immune regulatory role of NK cells

*Kill cells that are proliferating too much

*Kill T cells causing autoimmunity

*Secrete pro-inflammatory cytokine – IFN γ

*Secrete suppressive cytokines – IL-10

Class Discussion

What do you think would happen if you had no NK cell?

New England Journal of Medicine

1989

Vol. 320 No. 26

MEDICAL INTELLIG

MEDICAL INTELLIGENCE

SEVERE HERPESVIRUS INFECTIONS IN AN ADOLESCENT WITHOUT NATURAL KILLER CELLS

CHRISTINE A. BIRON, PH.D., KEVIN S. BYRON, AND JOHN L. SULLIVAN, M.D.

Caused by loss-of-function mutation in one allele of GATA2

NK cell-deficient patient

caused by heterozygous loss of GATA2 – can't control warts (HPV)

Physiological role of NK cells is to protect against viral infections and cancer

Humans lacking NK cells are particularly susceptible to:

- Epstein-Barr Virus Fleisher, J. Pediatrics 1982
- Cytomegalovirus and other herpesviruses Biron, NEJM 1989
- Papillomavirus (cervical cancer) and Herpes Simplex
 Virus

Ballas, J. Allergy Clinical Immuno 1991

- Varicella Zoster Virus Etzioni, J. Peditrics 2005

The NEW ENGLAND JOURNAL of MEDICINE 2021

BRIEF REPORT

Treatment of Relapsing HPV Diseases by Restored Function of Natural Killer Cells

Andrea Lisco, M.D., Ph.D., Amy P. Hsu, B.S., Dimana Dimitrova, M.D., Diana M. Proctor, Ph.D., Emily M. Mace, Ph.D., Peiying Ye, Ph.D., Megan V. Anderson, R.N., B.A., Stephanie N. Hicks, R.N., B.S.N., Christopher Grivas, B.S., Dima A. Hammoud, M.D., Maura Manion, M.D., Gabriel J. Starrett, Ph.D., Alvin Farrel, Ph.D., Kerry Dobbs, M.S.,
Isaac Brownell, M.D., Ph.D., Christopher Buck, Ph.D., Luigi D. Notarangelo, M.D., Jordan S. Orange, M.D., Ph.D., Warren J. Leonard, M.D., Michael I. Orestes, M.D., Anju T. Peters, M.D., Jennifer A. Kanakry, M.D., Julia A. Segre, Ph.D., Heidi H. Kong, M.D., and Irini Sereti, M.D., M.H.S.

How do NK cells sense their environment?

Cytokines produced by infected epithelial or myeloid cells

"Stressed" cells – upregulate host-encoded ligands for activating NK receptors

Infected cells express virus-encoded ligands for activating NK receptors

How are NK cell responses regulated?

NK cells like to kill cells lacking MHC class I – "missing-self"

"Missing-self" MHC on a cell is not sufficient for an NK cell to attack

NK cells require activating receptors to detect ligands on the target cell to initiate a response

NK cell functions are controlled by a balance of inhibitory and activating receptors

Physiological role for NK cell inhibitory receptors for MHC class I- detection of virus-infected or cancer cells?

Virus	Protein	Effect on class I
Adenovirus	E3-k19	Retain in ER
HSV-1,2	ICP47	Blocks TAP
EBV	EBNA1	Block peptide generation
HCMV	US2, US11	ER to cytosol
HCMV	US3	Retain in ER
HCMV	US6	Blocks TAP
HCMV	US10	Degrades HLA-G
MCMV	m152	Retain in ER
MCMV	m04	Associates with H-2
MCMV	m06	Lysosomal degradation
HHV8	K3, K5	Endocytosis
HIV-1	Nef	Endocytosis

37% of human melanomas have lost HLA class I Rodig Sci Trans Med 2018 10:eaar3342

Structural differences between MHC class I-specific inhibitory receptors in mice and humans

Class Discussion

Why would primates need to evolve a new system or recognize MHC?

HLA specificities of human KIRs

KIR2DL1 : HLA-C2 allotypes (Cw2, 4, 5, 6=Lys80)

KIR2DL2 & KIR2DL3 : HLA-C1 allotypes (Cw1, 3, 7, 8=Asn80)

KIR3DL1 : HLA-Bw4

KIR3DL2: HLA-A3

Lanier, Ann Rev Imm 2005

Different people have different KIR genes

KIR genes are highly polymorphic!

KIR Alleles									
Gene	2DL1	2DL2	2DL3	2DL4	2DL5A	2DL5B	2DS1	2DS2	2DS3
Alleles	428	35	68	114	45	47	33	65	71
Proteins	126	16	36	59	20	21	12	22	23
Nulls	9	0	1	0	1	0	0	0	2
Gene	2DS4	2DS5	3DL1	3DL2	3DL3	3DS1	2DP1	3DP1	
Alleles	41	88	307	252	232	91	114	188	
Proteins	22	38	138	141	116	37	0	0	
Nulls	22	0	5	4	1	2	0	0	

2219 alleles at 14 KIR loci

https://www.ebi.ac.uk/ipd/kir/

NK cell functions are controlled by a balance of inhibitory and activating receptors

ITAM-based activating NK receptors

Miller & Lanier Ann Rev Cancer Biology 2019

Co-activating NK receptors

Miller & Lanier Ann Rev Cancer Biology 2019

NKG2D

- C-type lectin-like superfamily
- 1 gene, non-polymorphic, conserved mice humans
- Homodimer expressed on all NK cells, $\gamma\delta$ T cells, and CD8+ T cells
- R in transmembrane associates with D in DAP10 transmembrane

DAP10

- 10 kd homodimer
- Cytoplasmic YINM recruits Grb2 & p85 PI3-kinase

NKG2D ligands

- MHC class I-like
 - don't require peptide or β 2-microglobulin
- Bind with nM affinity to NKG2D
- Low levels expressed on healthy tissues
- <u>Induced</u> on virus-infected cells and tumor cells
- <u>Induced</u> by DNA damage (ATM/ATR pathway)
- <u>Elevated</u> in autoimmune diseases

 (rheumatoid arthritis, celiac disease, diabetes, atherosclerosis)

NKG2D on NK cells, $\gamma\delta$ T cells, and CD8⁺ T cells detect NKG2D ligands on abnormal cells

Of snowflakes and natural killer cell subsets

Lewis L Lanier

Nature Biotechnology 32, 140–142 (2014) | doi:10.1038/nbt.2810 Published online 07 February 2014

You may have more than 30,000 NK cells subsets in your blood - CyTOF analysis by Catherine Blish (Stanford)

Class Discussion

Why don't NK cells kill HLA class I-negative tumors arising in cancer patients?

Why don't NK cells kill HLA class I-negative tumors arising in cancer patients?

*Tumors lack ligands for activating receptors

*NK cells kill some tumors, but without cytokines don't expand – then become "de-sensitized"

*Redundant inhibitory receptors other than for class I dampen NK cell responses

*Tumor microenvironment suppresses NK cell (e.g. NK cells hate Transforming Growth Factor β)

MHC class I Inhibitory Receptors on Human NK cells

Inhibitory Receptors on Human NK cells

STRATEGIES FOR THERAPEUTICALLY MODULATING NK CELL FUNCTION

Factors boosting NK cell lytic activity

Ljunggren & Malmberg NRI 2007

Checkpoint blockade therapies

Antibody-dependent cellular cytotoxicity

rituximab, trastuzumab, daratumumab

Bispecific antibodies

- anti-tumor x anti-NK activating receptor

Therapies that up-regulate stress-induced ligands on tumors

or agents that activate NK cells

CAR NK cells Chimeric antigen receptors

anti-CD19-cytoplamic CD137-CD3 ζ

Innate T cells

ILC and NK cells

- ILC family of innate lymphocytes rapid cytokine production
- NK cells keep you alive during certain viral infections
- NK cells regulated by inhibitory and activating receptors
- NK receptors are evolving rapidly
- NK cells possess immunological memory

Reviews

ILC Jacquelot et al, Nature Immunology 2022

NK Lanier Journal of Experimental Medicine 2024, In press.

NK cell Immunotherapy Miller & Lanier Ann Rev Cancer Biology 2019