

Making drugs from T cells: Quantitative Analysis of CAR-T Pharmacology

FOCIS Cancer Immunity & Immunotherapy Course

June 20, 2023

Daniel Kirouac

Pharmacometrics: Quantitative Pharmacokinetics & Pharmacodynamics (PKPD)

Pharmacokinetics (PK): Dose-Exposure

Pharmacodynamics (PD): Exposure-Response

PKPD: Dose regimen optimization

 C_{max} : maximal concentration T_{max} : time at Cmax AUC : Area under the Curve CL: Clearance rate (~half-life⁻¹)

Effect = $E_{max} \cdot \left(\frac{C^k}{C^k + EC50^k}\right)$ Therapeutic index: EC50(efficacy) – EC50(tox)

How do we apply these quantitative metrics to adoptive T cell therapy?

Adoptive T cell therapy: what drives exposure/response?

Mueller KT, Waldron ER, Grupp SA, et al (2018) Clinical Pharmacology of Tisagenlecleucel in B-Cell Acute Lymphoblastic Leukemia.

Clin Cancer Res 24(24):6175-6184

Distribution

- Where do T cells go?
- Does proliferation/expansion occur in tissues or blood?

Cell Expansion

- Memory vs. exhaustion phenotype...sometimes
- Intrinsic proliferative capacity of the cells
- CAR design & expression
- Patient cytokine levels
- Tumor burden

Contraction & Clearance/Persistence

- · Memory cell generation following antigen clearance
- Competition from host T cells for 'space'
- Allogeneic elimination (host vs. graft)

Anti-tumor efficacy & toxicity (CRS)

- Exposure (Cmax / AUC)
- Intrinsic cytotoxic potency
- CAR design & expression
- Tumor Microenvironment inflammatory/anti-inflammatory signals
- Tumor homing/penetration**

Qi T, McGrath K, Ranganathan R, et al (2022) Cellular kinetics: A clinical and computational review of CAR-T cell pharmacology. Adv Drug Deliver Rev 188:114421.

Adoptive T cell therapy: what drives exposure/response?

Mueller KT, Waldron ER, Grupp SA, et al (2018) Clinical Pharmacology of Tisagenlecleucel in B-Cell Acute Lymphoblastic Leukemia.

Clin Cancer Res 24(24):6175-6184

Outline

- 1. What pharmacometrics predict patient response?
 - *Empirical* pharmacokinetic (PK) modelling
- 2. What cell-intrinsic properties of the CART product underly the wide clinical variability?
 - Mechanistic PKPD modelling of Tcell:tumor interactions
 - Machine learning model for predicting response
- 3. What patient-intrinsic factors mediate response?
 - A. T cell bio-distribution*
 - B. Tumor inflammation
 - C. Lympho-depletion regimen & patient response
 - D. Host vs. Graft (allogeneic clearance)

1. What CAR-T pharmacometrics predict response?

CAR-T pharmacokinetic ("cellular kinetics") model Developed for Kymriah (TISAGENLECLEUCEL-T) BLA

Empirical model quantifies PK curves PK simulations vs. clinical data

Internal model simulations

Model parameters

*Kalos et al (2011) Sci Transl Med 3:73-95.

PAARAMETR	THETA (mean)	ETA (variance)
Cmax	24000 (counts/ug)	0.65
Tmax	9.3 (day)	0.38
foldX (Cmax/C ₀)	3900	2.4
Fb (fraction Tm at tmax)	0.0079	0.8
Alpha (contraction)	0.16 day ⁻¹	0.91
Beta (persistence)	0.0032 day ⁻¹	0.86

Stein AM, Grupp SA, Levine JE, et al (2019) Tisagenlecleucel Model-Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. CPT Pharmacometrics Syst Pharmacol 8:285–295.

CAR-T exposure-response analyses

Abecma in Multiple Myeloma

Connarn JN, Witjes H, Geffen M van Z, et al (2023) Characterizing the exposure–response relationship of idecabtagene vicleucel in patients with relapsed/refractory multiple myeloma. Cpt Pharmacometrics Syst Pharmacol. https://doi.org/10.1002/psp4.12922

Inter-individual variability (IIV) washes out dose-responses Kymriah in DLBCL

Awasthi R, Pacaud L, Waldron E, et al (2020) Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood 8 Adv 4:560–572.

2. What cell-intrinsic properties underly clinical variability and response?

McLane LM, Abdel-Hakeem MS, Wherry EJ (2015) CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol 37:1–39.

DC Kirouac, C Zmurchok, A Deyati, J Sicherman, C Bond, PW Zandstra. Deconvolution of clinical variance in CAR-T pharmacology and response. Nat Biotech 2023

"Toggle switch" model structure and assumptions

- T_M : memory T cells
- T_E: effector T cells
- T_X: exhausted T cells
- B: B cells (tumor)
- B_A: B cell antigen

T cell differentiation toggle switch

Model training data: Kymriah in Chronic Lymphoblastic Leukemia PKPD profiles, CAR-T product transcriptomes and immuno-phenotypes vs. response

Population mean PKPD: Kymriah in Chronic Lymphoblastic Leukemia (CLL)

- Can we recapitulate the pharmacokinetics & tumor dynamics (PKPD) based on T cell biology?
- What kinetic parameters / molecular features distinguish robust vs. poor responding patients?

Pre-infusion CAR-T transcriptomes

CR=5, PR =5, NR=21

Fraietta JA, Lacey SF, Orlando EJ, et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571.

Model development and validation workflow

Model calibration & analysis What features (model parameters) separate clinical outcomes?

What differentiates CR vs. NR?

CAR-T products in CR vs. NR show:

- Heightened memory cell turnover (μ_M , d_M)
- Heightened cytotoxic potency (*TK50*)
- Little difference in Tmem/Texh frequency 3

*Assume Dose = 10⁸ cells, Tumor burden = 10¹⁰ cells (median reported); Estimate parameters using PSO: simulations represent 90% confidence intervals

Scale counts/ug to cell/uL using data from: Kalos, M. et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med 3, 95ra73-95ra73 (2011).

'Validation' of model inferences via single-cell transcriptomes

Mathematical inferences assessed in an additional blood cancer: Acute Lymphoblastic Lymphoma

T cell composition (memory vs. exhausted cells) does not substantially vary by response category

***ProjecTILS annotation**: Andreatta M, Corria-Osorio J, Müller S, et al (2021) Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun 12:2965.

CART Dysfunction: Good CR, Aznar MA, Kuramitsu S, et al (2021) An NK-like CAR T cell transition in CAR T cell dysfunction. Cell.

'Validation' of model inferences via single-cell transcriptomes

Mathematical inferences assessed in an additional blood cancer: Acute Lymphoblastic Lymphoma

T memory cells from NR patients display intrinsic functional deficits analogous to T cell exhaustion

*ProjecTILS annotation: Andreatta M, Corria-Osorio J, Müller S, et al (2021) Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun 12:2965.

CART Dysfunction: Good CR, Aznar MA, Kuramitsu S, et al (2021) An NK-like CAR T cell transition in CAR T cell dysfunction. Cell.

Tem, Tmem cells from NR samples appear functionally exhausted *Tem: defined via ProjecTILs algorithm *Tmem: defined via CD8+CD45RO-CD27+ CITEseg tags

Cell-intrinsic differences

Data Source: Bai Z, Woodhouse S, Zhao Z, et al (2022) Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv 8:.

CAR-T clinical response prediction

Are pre-infusion CAR-T transcriptomes predictive of clinical response (CR vs. NR)?

Lage P, small N problem: the central challenge in biomedical genomics

CAR-T clinical response prediction Are pre-infusion CAR-T transcriptomes predictive of clinical response (CR vs. NR)?

scRNAseq pre-infusion CAR-Ts **CR/NR/PR** classes **Kymriah in ALL** Yescarta in LBCL Kymriah in LBCL Kymriah in ALL (Bai 2022) (Haradhvala 2022) (Haradhvala 2022) В Transcriptome D С Transcriptome Transcriptome % Tex & Tmem – – – % Tex & Tem – – – % Tex & Tem 2.0 — Null — Null — Null *** CR = 6 CR = 11 20 CR = 5; NR/RL = 7 **PR/NR = 8** NR = 7 Kymriah in LBCL Density_ Density Density 1.0 1.0 = 6 : NR = 7 0.5 0.5 Yescarta in LBCBL 0.0 0.00 0.25 0.50 0.75 0.75 1.00 0.25 Accuracy 0.00 0.25 0.50 0.75 1.00 Accuracy Accuracy Accuracy = 80% Accuracy = 80%Accuracy = 71%Tmem, Tex:ProjecTILS Tmem, Tex: CITESeg data Tmem, Tex: ProjecTILS* 11: NR = 8 CR = 5: NR/RL = 7 CR = 6 ; NR = 7 CR = 11: NR/PR = 8 *** $P < 10^{-8}$ (rank-sum test) CR NR

> Functional attributes predictive of clinical outcomes are CART-cell-intrinsic & indication-agnostic Transcriptome > 'gold standard' immunophenotyping

Predictive accuracy of response classification using 60:40 train:test splits

CAR-T clinical response prediction What transcriptional signatures are predictive of CAR-T response?

CAR-T Response Score-card

3. Patient-intrinsic factors mediating response

- A. T cell biodistribution
- B. Tumor Inflammation
- C. Response to Lympho-depletion & host-T cell competition
- D. Host vs. Graft response (allogeneic elimination)

3A. Adoptive T cell Biodistribution Where do CAR-Ts go once administered? What happens in tissues vs. Blood?

Pharmacokinetics & biodistribution of radio-labelled T cells in mice Whole blood Lungs Heart AUC = 86.3 ± 2.6 AUC = 1727 ± 110.5 $AUC = 43.9 \pm 4.3$ BC = 39 3 BC = 2.010 10 3 0.1 0.01 100 200 100 200 300 10 * Spleen Liver Tumor AUC = 19646.1 ± 1111.7 AUC = 6457.2 ± 659.6 AUC = 57.1 ± 10.8 1000 1000 BC = 447.6BC = 1.3BC = 147.5CAR-T (cells/uL) 100 10 ⁰ 200 200 300 100 10 -1 IGLN Bone TDLN AUC = 635 ± 76.6 AUC = 1204.9 ± 305.4 AUC = 711.8 ± 191.6 100 100 BC = 27.5 BC = 14 5 BC = 16.2 10 -2 10 0 ***BC** = Biodistribution Coefficient.

= AUC of T cells in tissue vs. blood

Majority of administered T cells distribute to lungs, spleen, liver, kidney & lymph nodes.

Khot A, Satoko M, Thomas VA, et al (2019) Measurement and Quantitative Characterization of Whole-Body Pharmacokinetics of Exogenously Administered T Cells in Mice. J Pharmacol Exp Ther 368:jpet.118.252858.

Pharmacology 'accounting' in man vs. mouse

*ER = Expansion Ratio. How many cells do you detect at Cmax per infused? = Cmax*Vblood / Dose

Q: Where do the majority of CARTs distribute Q: Where does the 'action' happen (tissue vs. blood)?

3B. Tumor inflammation and CAR-T response Yescarta (CD19-CART) in DLBCL: ZUMA-1 trial

'Immunoscore' (Tumor inflammation) is the most significant patient-intrinsic predictor of CART response Immunoscore (Tumor inflammation) also drives Cmax

Q: How would pre-existing TILs influence CAR-T expansion?

3C. Lympho-depletion intensity & response via IL7 availability?

Q: How does Lympho-depletion intensity affect CAR-T expansion and peak IL7 concentration? Q: Can we *mimic* intense-LDT via cytokine support?

Hirayama AV, Gauthier J, Hay KA, et al (2019) The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133:1876–1887.

Competition between Adoptive vs. Patient T cells

Model structure

Model fitting: Yescarta in LBCL (ZUMA-1) CAR-T and Host-T cell kinetics

Kimmel GJ, Locke FL, Altrock PM (2021) The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy. Proc Royal Soc B 288:20210229.

3D. Host vs. Graft response (allogeneic elimination) Host T cells actively clear (allogenic) T cell grafts

UCART19 in B-ALL: The first reported allogeneic CAR-T clinical data CD19-CART, allogeneic (healthy donor-derived) T cells, *TRAC*^{-/-}

• Deeper LDT & slower T cell reconstitution ~ greater allogenic CART exposure Q: How would additional gene edits (i.e. MHC-knock out) affect allo-clearance rates

Data digitized from: Derippe T, Fouliard S, Marchiq I, et al (2022) Mechanistic modeling of the interplay between host immune system, interleukin 7 and UCART19 allogeneic CAR-T cells in adult B-cell acute lymphoblastic leukemia. Cancer Res Commun 2:1532–1544.

Kymirah PK simulations: Stein AM, Grupp SA, Levine JE, et al (2019) Tisagenlecleucel Model-Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. Cpt Pharmacometrics Syst Pharmacol 8:285–295.

The next frontier: iPSC-derived CAR-Ts

FT819: The first reported clinically tested iPSC-derived CART CD19-CART, allogeneic (iPSC-differenentiated) T cells, *TRAC*^{-/-}

Both robust cell expansion + persistence (AUC) is required for clinical activity

Q: Why are (FT819) iPSC-CARTs incapable of persistence - *Cell intrinsic* deficit vs. *allogeneic*-clearance?

Summary

- 1. Empirical PKPD models
- Cmax predicts response
- High variability makes doseoptimization infeasible

2. Mechanistic modelling & machine learning

- Product intrinsic-proliferation of memory cells is important for clinical response
- Predictive features are buried in CART transcriptomes

3. Patient-intrinsic effects

 Biodistribution, inflammatory state, lympho-depletion response, and Host vs Graft affect PK and response

Mathematical models can enable CAR-T design, optimization and data interpretation Quantitative data is required to translate measurements to kinetic parameters

Thank You!

Vancouver, BC

- ✓ Developmental immunology
- ✓ Systems Biology and T cell pharmacology

Seattle, WA

- Protein and genome engineering
 Translational sciences
- ✓ Cancer biology

Avisek Deyati, Jordan Sicherman Cole Zmurchok Peter Zandstra, Chris Bond, Gregory Block Irja Elliott Donaghue

Toronto, ON✓ GMP iPSCs and gene editing

T cell manufacturingQA/QC

THERAPEUTICS

- Confidential -

What value does modelling bring to drug development?

The biological mechanisms underlying experimental data are often complex and non-intuitive

The number of possible experiments to conduct is infinite

3D. Host vs. Graft response (allogeneic elimination) Host T cells actively clear (allogenic) T cell grafts

UCART19 in B-ALL: The first reported allogeneic CAR-T clinical data CD19-CART, allogeneic (healthy donor-derived) T cells, TRAC-/-

Dupouy S, Marchiq I, Derippe T, et al (2022) Clinical Pharmacology and Determinants of Response to UCART19, an Allogeneic Anti-CD19 CAR-T Cell Product, in Adult B-cell Acute Lymphoblastic Leukemia. Cancer Res Commun 2:1520-1531.

Host T cell reconstitution limits CAR-T expansion

Initial expansion (Cmax) predicts response for multiple CAR-Ts Clearance does not (for autologous products)

Liu C, Ayyar VS, Zheng X, et al (2020) Model-based Cellular Kinetic Analysis of Chimeric Antigen Receptor-T Cells in Humans. Clin Pharmacol Ther.

Cell Kinetic model to data from 7 CART trials (Jansen)

Model-based insights into clinical response: cell dose & tumor burden

Virtual Populations vs. Yescarta in LCBCL (ZUMA-1) В С А Dose/B0 Random Param. 0.75 0.75 0.75 Yescarta Response 0.5 0.5 0.5 ***** 0.25 0.25 0.25 10⁻² 2.7×10^{10} 10⁻² 10⁻¹ 10⁰ 10^{2} 8.5×10^{8} 10^{1} 10^{3} 10^{0} 10^{-4} Tumor Burden (cells) Cmax/Tumor Burden (dimensionless) Cmax (cells/uL)

Predicted covariates of response: Cmax vs. Tumor Burden

Data source: Locke FL, Rossi JM, Neelapu SS, et al (2020) Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 4:4898–4911.

Mechanism-based models can *predict* biological processes underlying clinical observations

Model training: Ph1 Abecma dose escalation (BCMA, Multiple Myeloma)

Predicted sub-population dynamics: Ph1 dose escalation

Lympho-depletion intensity & response via IL7 availability?

Cycolophosphamide (Cy) vs. Cy + Fludarabine (Flu): CD19-CART therapy in B-ALL

Turtle CJ, Hanafi L-A, Berger C, et al (2016) CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126:2123–2138.

Q: How does Lympho-depletion intensity affect CAR-T expansion and peak IL7 concentration?

Q: Can we *mimic* intense-LDT via cytokine support?

High vs. Low-intensity Cy+Flu: CD19-CART therapy in NHL

^{*60} vs. 30 mg/kg cyclophosphamide

Hirayama AV, Gauthier J, Hay KA, et al (2019) The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133:1876–1887.

3B. Tumor inflammation and CAR-T response Yescarta in DLBCL: ZUMA-1

T cell inflamed tumors ~ improved survival

Tumor inflammation ~ Cmax (CART expansion)

Immunoscore is the most significant "co-variate"

Cox-regression (statistical) model

Variable	Ν		HR (95% CI)	P value
Immunoscore				
High	17	•	Reference	
Low	12		412.45 (2.63, 64,685.	90)0.020
Gender			No. 22 No.	
Female	13		Reference	
Male	16	⊢∎	0.51 (0.05, 5.27)	0.569
Subtypest				
GCB	18	•	Reference	
ABC	4	\leftarrow $\stackrel{!}{\longrightarrow}$	• 0.00 (0.00, Inf)	0.999
N/A	1	\leftrightarrow	0.00 (0.00, Inf)	1.000
Unknown	6	⊢⊨∎−−1	2.00 (0.12, 34.57)	0.634
IPI				
Low	6	ŧ	Reference	
Intermediate	10	⊢ 	0.64 (0.02, 16.94)	0.787
High	13		0.06 (0.00, 16.40)	0.327
Baseline tumor burden (SPD)	29	•	1.00 (1.00,1.00)	0.018
BCL2 overexpression				
Yes	16		Reference	
No	8	∉ _ <u>+</u>	0.07 (0.00, 2.16)	0.127
Unknown	5	\leftrightarrow	0.00 (0.00, Inf)	1.000
c-MYC overexpression				
Yes	10		Reference	
No	14	· · · · · · · · · · · · · · · · · · ·	202.19 (3.98, 10,283.	23)0.008
Unknown	5	\leftrightarrow	0.00 (0.00, Inf)	1.000
BCL6 overexpression				
Yes	15		Reference	
No	10	- -⊞	6.52 (0.65, 65, 49)	0.111
Unknown	4	\leftrightarrow	Inf (0.00, Inf)	0.999
		·····	(111)	
		0, 10,00,000		
		1, 00,		
		HB (95% CI)		

Q: How would pre-existing TILs influence CAR-T expansion?

