FOCIS/SITC 2023 Combinatorial Therapeutics in Solid Tumors: PSMAxCD28 CoStimulatory Bispecific mAb (REGN5678) with Cemiplimab (anti-PD-1) in mCRPC

> Israel Lowy, MD, PhD Regeneron Pharmaceuticals

> > **REGENERON***

Disclosures

- 1. Israel Lowy is Sr Vice President of Translational and Clinical Oncology, and an employee, officer and stockholder in Regeneron Pharmaceuticals
- 2. This presentation discusses off label/investigational uses of cemiplimab (anti-PD-1) and other therapeutic agents that have not received regulatory approvals

Unique flexibility of internally-developed pipeline drives potential for novel and differentiated combinations

3 EGFR, Epidermal growth factor receptor; MUC16, Mucin 16; PSMA, Prostate-specific membrane antigen; R/R, Relapse/refractory; B-NHL, B-cell Non-Hodgkin lymphoma; BCMA, B-cell maturation antigen; NSCLC, Non-small cell lung cancer; SCCHN, Squamous cell carcinoma **REGENERON**

How Killer T cells recognize and attack target cells

Signal 2: Promote expansion of killing signal using costimulatory receptor (CD28) on APC

(Signal 3: Cytokine amplification: e.g., IL-2, IFNy, IL-12)

Killer T cell

activation

requirements

Then: Rapid suppression, via checkpoint inhibition (e.g. PD-1 and LAG-3), to prevent auto-immunity

REGENERON

"Cold tumors" can evade Killer T cells

REGENERON

"Cold tumors" can evade Killer T cells

Tumors eliminate Signal 1 and/or 2, and increase checkpoint inhibition

X

Signal 1: Tumors do not present any (or very few) mutant peptides Signal 2: Tumors do not present any (or little) costimulatory ligand (B7) Tumors over-express checkpoint (e.g. PD-1 and LAG-3) ligands

Turning "cold" tumors into "hot" tumors: Restore signal 1 & 2 in killer T cells, block checkpoint inhibition

Tumors eliminate Signal 1 and/or 2, and increase checkpoint inhibition Signal 1: Tumors do not present any (or very few) mutant peptides
Signal 2: Tumors do not present any (or little) costimulatory ligand (B7) Tumors over-express checkpoint (e.g. PD-1 and LAG-3) ligands

REGENERON

Turning "cold" tumors into "hot" tumors: Restore Signal 1 & 2 in killer T cells, block checkpoint inhibition

Signal 1: Restore Signal 1 using "CD3 BiSpecific" Signal 2: Restore Signal 2 using "CoStim BiSpecific" Block "Checkpoint Inhibitors" using anti-PD1 (or anti-LAG-3)

✓ Regeneron has clinically validated its checkpoint blockers (anti-PD-1 and anti-LAG-3) and CD3-bispecifics

- ✓ First-in-class costimulatory bispecifics have minimal clinical activity as monotherapy
- ✓ Preclinical studies have shown profound synergy when any of these above agents are combined

A NOVEL CLASS OF CD28 COSTIMULATORY ANTIBODIES may be combined with Anti-PD-1 and/or CD3 bispecific antibodies

Depends on pre-existing anti-tumor immunity

Requires <u>specific</u> tumor targets

PD-1 can exclude CD28 from the synapse

• PD-1 inhibition decreases localization of PD-1 and enhances the accumulation of CD28 in the synapse

Panel A: use of a non-blocker anti-PD-1 Ab Panel B: use of a blocker anti-PD-1 Ab

> PD-1 inhibition decreases localization of PD-1 and enhances the accumulation of CD28 in the synapse

Waite et al., Sci. Transl. Med. June 24, 2020 REGENERON

Applying our costimulatory bispecific based approach in various solid tumors: focus in prostate cancer

EGFR, Epidermal growth factor receptor; MUC16, Mucin 16; PSMA, Prostate-specific membrane antigen; R/R, Relapse/refractory; B-NHL, B-cell Non-Hodgkin lymphoma; BCMA, B-cell maturation antigen; NSCLC, Non-small cell lung cancer; SCCHN, Squamous cell carcinoma f the head and neck; CSCC, Cutaneous squamous cell carcinoma; ADC, Antibody drug conjugate; LAG-3, Lymphocyte-activation gene 3; GITR, Glucocorticoid-induced TNFR-related protein

PSMAxCD28 + PD-1 MAB SPECIFICALLY ACTIVATES T CELLS & INDUCES PROINFLAMMATORY CYTOKINES WITHIN THE TUMOR

Waite et al., Sci. Transl. Med. June 24, 2020 REGENERON

First-in-class costim bispecific PSMAxCD28 + cemiplimab in development for late-stage prostate cancer

• REGN5678-ONC-1879 is an open label, phase 1/2, first-in-human (FIH) study evaluating safety, tolerability, PK and preliminary anti-tumor activity of REGN5678 (PSMAxCD28 bsAB) alone and in combination with cemiplimab (anti-PD-1 mAb) in treatment-experienced mCRPC. There are two parts:

Key inclusion:

mCRPC that has progressed within 6 months prior to screening based on prostate specific antigen progression and/or radiographic progression.

Received ≥2 lines of prior systemic therapy approved for metastatic and/or castration-resistant disease, including an NHA

Study Schema: R5678-ONC-1879 (NCT03972657)

**Standard imaging assessment will be performed, in addition to PSMA PET (18F-DCFPyL) at select centers and time points

PSMAxCD28 + Cemiplimab: Initial Clinical Data Supporting Synergy with CoStim BiSpecs & anti-PD-1

Proof-of-principle for the broader costimulatory bispecific platform

Patients from Dose Levels 1 to 5: 1/17 with PSA decline

Note: Prostate cancer shows ~5% response rates to anti-PD-1 monotherapy First clinical data from ongoing Phase 1/2 trial showed first evidence of anti-tumor activity for REGN5678 (PSMAxCD28) when combined with standard dose cemiplimab, suggesting potential to overcome mCRPC resistance to PD-1 inhibition

Efficacy and safety:

- <u>Dose Levels 1-5 (n=17)</u>: Minimal anti-tumor activity and no ≥Gr3 immune-mediated adverse events (imAEs)
 - 1/17 with PSA decline across these 5 dose levels
- Dose Levels 6-8 (n=18): Early signs of efficacy associated with imAEs
 - DL6: 1/4 patients had response -- a 100% decrease in PSA and a complete response in target lesions, maintained for ~12 months
 - Responder discontinued therapy due to a Gr3 imAE of skin; CR maintained over 1 year off therapy, with resolution of identifiable disease including bone lesions
 - DL7: 3/8 patients had PSA declines -- >99%, 44% and 22% respective decrease in PSA on combination therapy
 - Two pts with PSA decline had a Gr3 treatment related AE, which resolved
 - DL8: 3/4 patients had PSA responses -- >99%, 99% and 82% respective decreases in PSA on combination therapy
 - One pt with PSA response had an imAE resulting in death
- No additional Gr4 imAEs or ≥Gr2 CRS have been observed in the trial to date
- All ≥Gr3 imAEs occurred in patients with anti-tumor activity

Patients Patients from Dose Levels 6 to 8: 7/16 with PSA decline

REGENERON

PSA, prostate-specific antigen; CR, complete response; Gr, grade; CRS, cytokine release syndrome. Preliminary data. DO NOT POST

PSMAxCD28 + Cemiplimab demonstrated 75% PSA response at dose level 8

Advanced metastatic castration-resistant prostate cancer shows ~5% response rates to anti-PD-1 monotherapy

Dose Level 8: 3/4 patients had clinical responses while on combination treatment

- Patient 1009: 82% reduction in PSA at week 9
 - PSA at baseline >30 ng/mL; PSA continued to rise to >50 ng/mL until cemiplimab initiated at week 3
- Patient 7003: 99% reduction in PSA at week 9
 - PSA at baseline >200 ng/mL; PSA continued to rise until cemiplimab initiated at week 3
- Patient 2004: >99% reduction in PSA at week 6
 - PSA at baseline >500 ng/mL; PSA continued to rise to >600 ng/mL until cemiplimab initiated at week 3
 - Developed Gr3 case of acute inflammatory demyelinating polyradiculopathy (AIDP) shortly after initial cemiplimab administration
 - AIDP developed into hemophagocytic lymphohistiocytosis (HLH) at week 9 and patient passed away at week 13

Graphs of three PSA responders at dose level 8 Prostate-Specific Antigen (PSA) vs. time (weeks)

Treatment held for 1 week between W9 and W10. Patient still on treatment at W15

Patient 2004 (no radiographic response data)

Pt in DL7 with PSA response (decrease by 99%): 'pseudo-progression' in liver followed by response, PSMA PET positive lesion signal decreased in several lesions

	75	103	65	49
		+37.3%, PD	-13.3%, SD	-34.7%, PR
7 17				

DO NOT POST

Tumor lesions with low PSMA PET signal responded to R5678 + cemi These lesions are not expected to respond to PluvictoTM (177Lu-PSMA-11)

Screening scans of patient on previous slide (representative images)

PSMA PET

СТ

PSMA PET signal in tumor less than liver

More data required to evaluate potential differentiation from Pluvicto[™]

PluvictoTM (¹⁷⁷Lu-PSMA-11) eligibility criteria – all non-bone tumor lesions meeting size criteria must be positive on PSMA PET scan

- Size criteria = organ tumor lesions and bone lesion soft tissue component short axis \geq 1cm, nodal lesions short axis \geq 2.5cm
- PSMA PET visual assessment
 - positive = tumor signal greater than normal liver
 - negative = tumor signal equal to or less than liver

DO NOT POST

Summary

- Preliminary data on PSMAxCD28 (REGN5678) plus cemiplimab (anti-PD-1) in patients with mCRPC provide first evidence of clinical activity of a CD28 co-stimulatory bispecific antibody in solid tumors
- 2. Clinical activity was observed at doses of DL6-DL8 in combination with cemiplimab
- 3. ≥G3 imAEs occurred in patients with PSA declines, suggesting a possible association
- 4. Mitigation strategies under investigation to decouple imAEs from clinical activity
 - IL-6R blockade has been shown to mitigate both acute CRS with CART and CD3 bispecifics, as well as imAEs with dual checkpoint blockade
- 5. Study is ongoing to determine the maximum tolerated and recommended Phase 2 doses
 - Companion study is underway to explore PSMAxCD3 +/- cemiplimab and potential to combine with PSMAxCD28

19

ACKNOWLEDGEMENTS

INVESTIGATORS AND COLLABORATORS

Columbia University Medical Center Mark Stein David Wise Laura and Isaac Perlmutter Cancer Center (NYU Cancer Institute) William Kelly **Thomas Jefferson University Hospital** Icahn School of Medicine at Mount Sinai Che-Kai Tsao **Moffitt Cancer Center Jingsong Zhang Benedito Carneiro** Lifespan Cancer Institute **Gerald Falchook** Sarah Cannon Research Institute SCRI Xin Gao **Massachusetts General Hospital Joseph Kim Yale University Hospital** Sumit Subudhi **MD Anderson Cancer Center Bilal Siddiqui MD** Anderson Cancer Center **Christopher Logothetis MD Anderson Cancer Center**

THANK YOU TO ALL OF THE PATIENTS AND THEIR FAMILIES

DO NOT POST

