

Real Time Analysis of Immunotherapy Evasion

Shashank Patel, PhD Asso. Vice President, R&D, Immunai

Disclosure

This work was undertaken at National Cancer Institute, NIH which is one of the US Federal Government research organizations, unless indicated on the slides.

I am currently employed at Immunai USA.

Time : A key dimension and measurement

Measure of success in Clinical Oncology is Survival - OS, PFS (time unit)

How do we gain real time understanding of tumor immune evasion for T cell killing? Inherent resistance (Unresponsiveness) - Adaptive resistance (Relapse)

https://sciencevibe.com/wp-content/uploads/2014/12/

Larkin et al. 2015 NEJM

Immunity cycle in cancer and how immune system kills cancer?

Over decades of research, now we understand nothing is as simple in cancer!

But, so far the **common denominator** of most potent anti-cancer response is:

T cell mediated killing

Chen and Mellman, Immunity 2013

Dynamics (timings) of T cell interactions with cancer cells or antigen presenting cells

Jenkins et al. 2023 Nat comm.

Lau et al. 2020 Front Imm.

Rational approach to identify and target *Disfavored* genes against anti-cancer immunity

The Cancer Genome Atlas (TCGA)- 'Correlates' Hunt

In T cell enriched melanomas (top 25% *CD3E-Hi*), search of genes and pathways associated with cytolytic activity (*PRF*, *GZM*)

Identification of correlates disfavoring T cell cytotoxicity in TCGA melanoma dataset

Rational approach to identify and target *Disfavored* genes against anti-cancer immunity

Time-lapse capture of *Disfavored* genes in cancer cells

Time-lapse capture of *Disfavored* genes in melanoma cells

Rational approach to identify and target *Disfavored* genes against anti-cancer immunity

Oncogenic pathways- ORF library

Oncogenic pathways resisting T cell responses

CRISPR-based genetic deletion in T cell:Cancer cell coculture systems

Unbiased genome-scale CRISPR screens to search for disfavored genes

Unbiased genome-scale CRISPR screens to search for disfavored genes

Validated disfavored genes are rapidly induced in cancer cells upon T cell contact

Rational approach to identify and target *Disfavored* genes against anti-cancer immunity

Drug perturbations to find rationalized combination for T cell therapy

Target disfavored genes / pathways using small molecule inhibitors or mabs

Drug perturbations to find rationalized combination for T cell therapy

Rigorous validation of drug hits across different cell systems

Melanoma cell lines and TCR antigens

Biology of top validated gene

BIRC2 (cIAP1)

Amplified in cancers, e.g. head and neck

BIRC2 is an E3 ubiquitin-protein ligase that regulates nuclear factor κ B (NF- κ B) signaling and inhibits apoptosis

In immune cells, it can regulate antibacterial response via RIP2 and TRAF3 pathways

However the role in cancer : T cell responses is unexplored

BIRC2 inhibition via LCL161 emerges as rational combination for ACT / T cell immunotherapy

BIRC2 deletion improves anti-tumor T cell response in cancer model

What is the underlying MOA of BIRC2i antitumor effect?

Is it just 'inhibition of apoptosis'?

Is it more to this story?

Induction of BIRC2 in cancer cells upon T cell encounter

IFNg and TNFa are key effector cytokines released upon TCR activation

These cytokines rapidly induce BIRC2 expression

BIRC2 depletion upregulates antigen presentation and T cell chemoattractant genes

BIRC2 perturbation augments chemotactic migration of T cells

BIRC2 depletion enhances antigen presentation via IRF1

BIRC2 knockdown in Immune checkpoint responses

Article

А

в

Cell Reports

BIRC2 Expression Impairs Anti-Cancer Immunity and Immunotherapy Efficacy

Graphical Abstract

Authors

Debangshu Samanta, Tina Yi-Ting Huang, Rima Shah, Yongkang Yang, Fan Pan, Gregg L. Semenza

Correspondence

gsemenza@jhmi.edu

In Brief

Immune checkpoint blockade has led to therapeutic responses, but for most cancer patients, immunotherapy is ineffective due to cancer-cell-intrinsic resistance mechanisms. Samanta et al. report that BIRC2 knockdown in melanoma or breast cancer cells dramatically alters the immune cell tumor microenvironment and increases sensitivity to anti-CTLA4 and/or anti-PD1 therapy.

Rational approach to identify and target *Disfavored* genes against anti-cancer immunity

Key learnings

Cancers find multiple routes and subroutes of evading immune attack. We can select one of these routes and interrogate the underlying principles using systems approach to find the rational combinations for drug treatments that may aid development of next generation of combinatorial treatments.

Systems approach includes utilization of public datasets to obtain patient centric insights into disease biology, development of cellular systems to generate large datasets and finally honing deeply into systematic perturbation and mechanistic studies.

It's very important to understand limitations of systems and models used in immune interrogation.

Credits

Identification of essential genes for cancer immunotherapy

Shashank J. Patel^{1,2,†,*}, Neville E. Sanjana^{3,4,†,*}, Rigel J. Kishton¹, Arash Eidizadeh¹, Suman K. Vodnala¹, Maggie Cam¹, Jared J. Gartner¹, Li Jia¹, Seth M. Steinberg¹, Tori N. Yamamoto^{1,5}, Anand S. Merchant¹, Gautam U. Mehta¹, Anna Chichura¹, Ophir Shalem⁶, Eric Tran¹, Robert Eil¹, Madhusudhanan Sukumar¹, Eva Perez Guijarro¹, Chi-Ping Day¹, Paul Robbins¹, Steve Feldman¹, Glenn Merlino¹, Feng Zhang^{7,8}, and Nicholas P. Restifo^{1,9},

Cancer genes disfavoring T cell immunity identified via integrated systems approach

Rigel J. Kishton,^{1,2,9,10,11,*} Shashank J. Patel,^{1,2,10} Amy E. Decker,³ Suman K. Vodnala,^{1,2,9} Maggie Cam,⁴ Tori N. Yamamoto,^{1,2,5} Yogin Patel,^{1,2,9} Madhusudhanan Sukumar,^{1,2} Zhiya Yu,^{1,2} Michelle Ji,^{1,2} Amanda N. Henning,^{1,2} Devikala Gurusamy,^{1,2} Douglas C. Palmer,^{1,2} Roxana A. Stefanescu,⁶ Andrew T. Girvin,⁶ Winifred Lo,¹ Anna Pasetto,¹ Parisa Malekzadeh,¹ Drew C. Deniger,¹ Kris C. Wood,³ Neville E. Sanjana,^{7,8} and Nicholas P. Restifo^{1,2,9,*}

