T cell Regulation and Tolerance FOCIS 2023

- 1. Central Tolerance
- 2. Receptor Editing in B cells
- 3. Clonal Deletion in the cortex and medulla
- 4. Natural and Peripheral Regulatory T cells
- 5. What Regulatory T cells Do
- 6. Inhibitory Receptors
- 7. Autoimmunity
- 8. "QUIETLY INTO THE NIGHT"

CENTRAL LYMPHOID ORGANS

PERIPHERY

GOD

Self Non-Self Recognition

Germline Organization of Human Ig Loci

Abbas, Lichtman, and Pillai. Cellular and Molecular Immunology, 7th edition. Copyright © 2011 by Saunders, an imprint of Elsevier Inc.

Checkpoints during B cell development

Distant segments are recombined during receptor assembly

Self-reactive B Edited B cell cell

Receptor editing occurs in the bone marrow

ONE STEP L-CHAIN REARRANGEMENT DRIVES RECEPTOR EDITING

THYMUS

FoXN1 required for medullary and cortical thymic epithelial development

CROSS-SECTIONAL VIEW

MORPHOLOGY OF THE THYMUS

DiGeorge syndrome 22q11.2 heterozygous deletion; Tbx1 gene a major gene'

Cleft palate, heart anomalies Typical facial dysmorphia

An overview of T cell development

Thymic T cell development

PROGRESSIVE MIGRATION AND POSITIVE SELECTION

NEGATIVE SELECTION OF SINGLE POSITIVE CELLS IN MEDULLA

Trends in Immunology

Opinion

Thymic mimetic cells: tolerogenic masqueraders

Daniel A. Michelson¹ and Diane Mathis ^{1,*}

Trends in Immunology

Mechanisms of peripheral T cell tolerance

T cell anergy- no Signal Two and role for CTLA-4

Inhibitory Receptors Dampen Immune Responses

They help mediate: 1.Peripheral Tolerance 2.Lymphocyte Exhaustion 3.Activation Induced Cell Death

```
CTLA-4, PD-1,
TIM-3 etc
```


Balancing lymphocyte activation and control

Activation Effector T cells Inhibition Regulatory T cells, Anergy, AICD, Exhausted T cells

Normal: reactions against pathogens Pathologic: inflammatory disease, e.g. caused by reactions against self or pathogens

No response to self Controlled response to pathogens

Properties of regulatory T cells

- Phenotype: CD4+, high IL-2 receptor (CD25), low IL-7 receptor, Foxp3 transcription factor; other markers
- Significance: Foxp3 mutations --> autoimmune disease (IPEX); many autoimmune diseases may be associated with defects in or resistance to Tregs
- Mechanisms of action: multiple
 - secretion of immune-suppressive cytokines (TGF β , IL-10; IL-35?)
 - inhibition of APC function (role of CTLA-4?)

Autoimmune diseases: failure of control

Pathogenesis of autoimmunity

Pathogenesis of organ-specific autoimmunity

Abbas, Lichtman and Pillai. Cellular and Molecular Immunology, 7th edition, 2011 C Elsevier

Model for the Pathogenesis of SLE

QUIETLY INTO THE NIGHT.....