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Properties of the TME are associated with prognosis

Type, Density, and Location of Inmune
Cells Within Human Colorectal Tumors
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The cancer immunoediting hypothesis:
How tumor cells evade the immune system
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Solid tumors are complex tissues
with a broad diversity of cell types
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Advances in single cell analysis provide

new perspectives on this diversity
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Different tumors have unique TMEs

Tumor Microenvironment
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Human TME archetypes defined by

patterns of the cellular infiltrate
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of immune cells in the
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independent of the cancer
tissue-of-origin

* Associations with prognosis

within the same tumor type
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Defining T cell subsets in the TME
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Many CD8 T cells in the TME are bystanders
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Tissue resident memory T cells (T;,) and newly infiltrating CD8
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Tumors can evolve to evade CD8 T cell responses

Mutations, silencing, or
degradation of MHC class |

Anti-PD1
\ . Anti-PD-L1

Loss of immunogenic neoantigens

Tumour cell

Mutations in antigen processing
machinery

Mutations in IFNYy signaling
pathway AOVGTVOT

Modified from Kalbasi and Ribas, Nat. Rev. Immunol., 2020



CD4 T cells in the TME
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CD4 T cells in the TME:
Opposing functions and cross-regulation

tumor microenvironment
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Recruitment of
DCs or pre-DCs
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Unique functions of dendritic cell subsets in the TME

Antitumor immunity Tolerogenicity, immunosuppression
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NK cells can drive a cDC1-CD8 T cell circuit
in the TME
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Macrophages in the TME:
The M1 /M2 Paradigm
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Macrophage ontogeny:
tissue- or bone marrow-derived?
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Macrophages can be
replenished from bone marrow-
derived monocytes

Early tissue macrophages are
derived from embryonic
sources

The balance of these sources of
cells is highly tissue-specific



Macrophage ontogeny:
tissue- or bone marrow-derived?
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Revisiting Macrophages in the TME:
A diversity of cell states

Human Breast Cancers:
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Neutrophils in the TME
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Fibroblasts in the TME
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Dissecting fibroblast diversity in the TME
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Soluble factors in the TME
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ECM DEPOSITION

Extracellular matrix in the TME

ECM REMODELLING IN THE PRIMARY TUMOUR
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The metabolic environment of the TME

The Tumor Microenvironment
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Percent survival

The spatial organization of the TME
is associated with prognosis

Triple-negative breast cancer:
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F-TBRS score

TGFf is a regulator of the “excluded” phenotype
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The spatial organization of the TME
is associated with prognosis

Multiplexed imaging of 36 proteins in 41 TNBC patients
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Cellular hubs with coordinated activity in the TME

scRNA-seq and spatial profiling of CRC patients
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Tertiary lymphoid structures in the TME

* TLS are lymph
node-like
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Tertiary lymphoid structures associate with response to
checkpoint inhibitor immunotherapy
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The “Cancer Immunity” cycle connects the TME with the rest of
the body

Trafficking of
T cells to tumors
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Chen and Mellman, Immunity, 2013



The “Cancer Immunity” cycle connects the TME with the rest of

the body

Priming and
activation
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The TME communicates with the rest of the body
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* Different mouse models of cancer change the peripheral immune system in
distinct ways

* Some have dramatic effects across all tissues, while some predominantly
impact the tumor-draining lymph node

Allen, Hiam et al., Nat. Med., 2020



Tumors can alter immune cell development
in the bone marrow

Haematopoietic stem
and progenitor cells
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Tumors can alter new immune responses
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Mice with established cancers make poor T cell response to new stimuli,
such as pathogens.



Tumors can alter new immune responses
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Antibody and T cell immmune responses following
MRNA COVID-19 vaccination in patients with cancer
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Department of Oncology, Odense University Hospital, Odense, Denmark



Pre-metastatic niches create a hospitable environment for

tumor cells to disseminate
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Before tumor cells
metastasize,
targeted tissues
begin to change

Infiltration of
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drive inflammation
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cells
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Liv and Cao, Cancer Cell, 2106
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