The Tumor Microenvironment (TME):

Matthew Spitzer, PhD University of California, San Francisco

San Francisco

I have the following financial relationships to disclose:

Shareholder and Director: Teiko.Bio

Consultant for: Five Prime, Ono, January, Earli, Astellas, Indaptus

Grant/Research support from: Genentech/Roche, Pfizer, Valitor, Bristol Myers Squibb

Speaker Honorarium: Fluidigm

- and –

I will not discuss off label use and/or investigational use in my presentation.

Properties of the TME are associated with prognosis

Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival

Curiel et al., Nat. Med., 2004

Schreiber, Old and Smyth, Science, 2011

Solid tumors are complex tissues with a broad diversity of cell types Representative HNSCC

dsDNA, Keratin, E-Cadherin, CD45, Vimentin, CD31

Maha Rahim, Kyle Jones

Advances in single cell analysis provide new perspectives on this diversity

Different tumors have unique TMEs

Human TME archetypes defined by patterns of the cellular infiltrate

Immune Desert CD4 & Macrophages

Immune Desert CD8 & Macrophages

Immune Stroma CD8 Immune Stroma CD4 & Macrophages Immune Desert Monocytes T cell centric Macrophages Pan-Cancer Census of Immune Archetypes

Pan-Cancer Census Immune Archetypes

- Measuring the composition of immune cells in the tumor can classify into 12 groups
- These groups are independent of the cancer tissue-of-origin
- Associations with prognosis within the same tumor type

Combes and Samad et al., Cell, 2022

Defining T cell subsets in the TME

- Single-cell RNAsequencing of tumorinfiltrating T cells
- Integrative analysis
 across 21 different
 tumor types
- The subsets of T cells are conserved across cancers, but significant variability across tumors

Many CD8 T cells in the TME are bystanders

Tissue resident memory T cells (T_{RM}) and newly infiltrating CD8 T cells

- T_{RM} express molecules that mediate retention in tumors
 - CD103
 - CD69
- Recent studies suggest
 recirculation into lymph
 nodes after activation
- Cell trafficking dynamics between TME and periphery is under active investigation.

Okla et al., J. Exp. Med., 2021

Tumors can evolve to evade CD8 T cell responses

- Mutations, silencing, or degradation of MHC class I
- Loss of immunogenic neoantigens
- Mutations in antigen processing machinery
- Mutations in IFNγ signaling pathway

CD4 T cells in the TME

- Different CD4 T cell subsets have opposing functions in the TME
- Recent studies
 identified
 importance for
 effective
 immunotherapy
- Direct recognition
 (MHC class II+
 tumors) and "helper"
 functions

CD4 T cells in the TME: Opposing functions and cross-regulation

- Treg depletion
 enables cDC2
 trafficking to the
 lymph node
- Antigen presentation drives a CD4 effector cell response

Dendritic cells: Functions in the TME and in the tdLN

 Antigen uptake in TME and presentation in lymph nodes

New studies identifying roles for supporting T cell responses in the TME

Unique functions of dendritic cell subsets in the TME

- cDC1s specialized in antigen crosspresentation
- cDC2s are better at priming CD4 T cell responses
- cDC3s recently described but may be a subset of cDC2s
- pDCs can make type 1 IFN but mixed functions

Kvedaraite and Ginhoux, Sci. Immunol., 2022

Bottcher et al., Cell, 2018; Barry et al., Cancer Cell, 2018 Figure from review: Peterson and Barry, Front. Immunol., 2021

Macrophages in the TME: The M1/M2 Paradigm

- Classically defined from in vitro polarization studies
- Extrapolation to in vivo immune responses

Macrophage ontogeny: tissue- or bone marrow-derived?

- Macrophages can be replenished from bone marrowderived monocytes
- Early tissue macrophages are derived from embryonic sources
- The balance of these sources of cells is highly tissue-specific

Ginhoux and Guilliams, Immunity, 2016

Macrophage ontogeny: tissue- or bone marrow-derived?

Ginhoux and Guilliams, Immunity, 2016

Revisiting Macrophages in the TME: A diversity of cell states

Human Breast Cancers:

Neutrophils in the TME

- Inflammatory functions can be pro- or anti-tumor
- Cytokines can promote tumor cell growth
- Other mechanisms can be tumoricidal

Cytotoxic

lymphocyte inhibition

CD8⁺ T cell

NK cell

• Suppression of T cell responses

Fibroblasts in the TME

- Substantial focus on tumorpromoting properties of cancer-associated fibroblasts (CAFs)
- Data suggest that fibroblasts can play anti-tumor roles in some contexts

Dissecting fibroblast diversity in the TME

PDPN-Not in FAPcurrent ENG⁺ datasets C7 NM Fib meso ENG⁺ CD74⁺ $C7^+$ HLA-DRA^{lo} COL1A1⁺ COL3A1⁺ TIMP1⁺ eCAF FAP+ (c1) HAS1+ LRRC15⁺ CXCL1+ COL11A⁺ CCL2* ACTA2+ FAP+ FAP CD74^{hi} CD74^{hi} IL1 CAF TGFB CAF HLA-DRA+ HLA-DRA (C2) (C0) ■ eCAF 44% CAF1 3% TGFβ CAF 52%

Dominguez et al., Cancer Discov., 2020

Buechler and Pradhan et al., Nature, 2021;

Soluble factors in the TME

Anti-tumor TME

Pro-tumor TME

- Complex cytokine networks mediate cell-cell communication and migration in the TME
- Shape the polarization, differentiation and effector function of each cell type
 Abousaway et al., Nanotheranostics, 2021

Extracellular matrix in the TME

ECM REMODELLING IN THE PRIMARY TUMOUR

Winkler et al., Nat. Comm., 2020

The metabolic environment of the TME

- Hypoxia
 - Induces HIF1 α
- Nutrient poor
 - e.g., glucose consumption, arginine and tryptophan depletion)
- Immunomodulatory metabolites
 - e.g., kynurenine, adenosine

Buck et al., Cell, 2017

The spatial organization of the TME is associated with prognosis

Triple-negative breast cancer:

Percent survival Percent survival Percent 50-50-50. inflamed inflamed inflamed excluded excluded excluded p=0.0003 p=0.003 p=0.009 gnored ianored gnored 50 100 150 100 150 50 150 50 100 Time [month] Time [month] Time [month]

Hammerl et al., Nat. Comm., 2021

TGF β is a regulator of the "excluded" phenotype

Mariathasan et al., Nature, 2018

The spatial organization of the TME is associated with prognosis

Cold

Keren et al., Cell, 2018

Cellular hubs with coordinated activity in the TME

Pelka et al., Cell, 2021

Tertiary lymphoid structures in the TME

- TLS are lymph node-like structures that form ectopically in inflamed tissues
- Variable in their composition, localization and maturation state
- Poorly modeled in mice

Tertiary lymphoid structures associate with response to checkpoint inhibitor immunotherapy

Cabrita et al., Nature, 2020 (figures) Helmink et al., Nature, 2020 Petitprez et al., Nature, 2020

The "Cancer Immunity" cycle connects the TME with the rest of the body

Chen and Mellman, Immunity, 2013

The "Cancer Immunity" cycle connects the TME with the rest of the body

Chen and Mellman, Immunity, 2013

The TME communicates with the rest of the body

- Different mouse models of cancer change the peripheral immune system in distinct ways
- Some have dramatic effects across all tissues, while some predominantly impact the tumor-draining lymph node

Allen, Hiam et al., Nat. Med., 2020

Tumors can alter immune cell development in the bone marrow

Casbon et al., PNAS, 2015; Meyer et al., 2018, Nat. Comm. Figure from review: Hiam-Galvez et al., Nat. Rev. Cancer, 2021

Tumors can alter new immune responses

 Mice with established cancers make poor T cell response to new stimuli, such as pathogens.

Tumors can alter new immune responses

Cancer Cell

Letter

CellPress

Antibody and T cell immune responses following mRNA COVID-19 vaccination in patients with cancer

Sidse Ehmsen,^{1,2,3} Anders Asmussen,⁴ Stefan S. Jeppesen,^{1,2,3} Anna Christine Nilsson,^{2,5} Sabina Østerlev,¹ Hanne Vestergaard,⁴ Ulrik S. Justesen,^{2,6} Isik S. Johansen,^{2,7} Henrik Frederiksen,^{2,3,4} and Henrik J. Ditzel^{1,2,3,8,9,*} ¹Department of Oncology, Odense University Hospital, Odense, Denmark

Pre-metastatic niches create a hospitable environment for tumor cells to disseminate

- Before tumor cells metastasize, targeted tissues begin to change
- Infiltration of myeloid cells that drive inflammation and suppress T cells
- Remodeling of ECM and vasculature

Liu and Cao, Cancer Cell, 2106

Questions?

